Questions taken from the WJEC SAMS Paper 1

Question Number	Solution	Mark	AO	Notes
1. (a)	A(1, -3)	B1	AO1	
	A correct method for finding the radius, e.g., trying to rewrite the equation of the circle in the form $(x - a)^2 + (y - b)^2 = r^2$	M1	AO1	
	Radius = 5	A1	AO1	
(b)	Gradient $AP = \frac{\text{increase in } y}{\text{increase in } x}$	M1	AO1	
	Gradient $AP = \frac{(-7) - (-3)}{4 - 1} = -\frac{4}{3}$	A1	AO1	(f.t. candidate's coordinates for A)
	Use of $m_{\text{tan}} \times m_{\text{rad}} = -1$	M1	AO1	coordinates for A)
	Equation of tangent is: $y - (-7) = \frac{3}{4}(x - 4)$	A1 [7]	AO1	(f.t. candidate's gradient for <i>AP</i>)
2.	$7 \sin^2 \theta + 1 = 3(1 - \sin^2 \theta) - \sin^2 \theta$	M1	AO1	(correct use of $\cos^2 \theta$ =
	An attempt to collect terms, form and solve a quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form			$1 - \sin^2 \theta$)
	$(a \sin \theta + b)(c \sin \theta + d)$, with $a \times c =$ candidate's coefficient of $\sin^2 \theta$ and $b \times d =$ candidate's constant	m1	AO1	
	$10 \sin^2 \theta + \sin \theta - 2 = 0$ $\Rightarrow (2 \sin \theta + 1)(5 \sin \theta - 2) = 0$ $\Rightarrow \sin \theta = -\frac{1}{2}, \sin \theta = \frac{2}{5}$	A1	AO1	(c.a.o.)
	θ = 210°, 330°	B1 B1	AO1 AO1	
	θ = 23·57(8178)°, 156·42(182)°	B1	AO1	
	Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.			
	$\sin\theta$ = +, -, f.t. for 3 marks, $\sin\theta$ = -, -, f.t. for 2 marks $\sin\theta$ = +, +, f.t. for 1 mark			
		[6]		

YEAR 1 | MATHEMATICS | WEEK 23 EXAM QUESTIONS MARK SCHEME

3.		$y + k = (x + h)^3$	M1	AO2	
		$y + k = x^3 + 3x^2h + 3xh^2 + h^3$	A1	AO2	
		Subtracting y from above to find k	M1	AO2	
		$k = 3x^2h + 3xh^2 + h^3$	A1	AO2	
			M1	AO2	
		Dividing by h and letting $h \to 0$			
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{limit}}{h \to 0} \frac{k}{h} = 3x^2$	A1	AO2	(c.a.o.)
		$\frac{d}{dx} = \frac{1}{h} \rightarrow 0$	[6]	7102	(6.4.0.)
_			[0]		
4.		Correct use of the Factor Theorem to find at		400	
		least one factor of f(x)	M1	AO3	
		At least two factors of f(x)	A1	AO3	(accept (x – 2·5) as a
					factor)
		f(x) = (x + 3)(x - 4)(2x - 5)	A1	AO3	(c.a.o.)
		Use of the fact that $f(x)$ intersects the y-axis			
		when $x = 0$	M1	AO3	
					(f.t. candidate's
		f(x) intersects the y-axis at (0, 60)	A1	AO3	expression for $f(x)$
			[5]		
-	(-)	A			
5.	(a)	A correct method for finding the coordinates		404	
		of the mid-point of AB	M1	AO1	
		D has coordinates (- 1, 5)	A1	AO1	
		Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1	AO1	
		$\frac{\text{Gradient of } AB = \frac{1}{\text{increase in } x}}{\text{increase in } x}$			
		Gradient of $AB = -\frac{6}{2}$	A1	AO1	(or equivalent)
		2			
		Gradient of $CD = \frac{\text{increase in } y}{x}$			
		Gradient of $CD = \frac{1}{\text{increase in } x}$	(M1)	(AO1)	(to be awarded only if
		increase in x			the previous M1 is not
		7			awarded)
		Gradient of $CD = \frac{7}{21}$	A1	AO1	(or equivalent)
		21			` '
		6 7 1 AD is normalisation to CD			
		$-\frac{6}{2} \times \frac{7}{21} = -1 \Rightarrow AB$ is perpendicular to CD	B1	AO2	
		2 21			
	(b)	A correct method for finding the length of			
1	(b)	AD or CD	M1	AO1	
		$AD = \sqrt{10}$	A1	AO1	
		$CD = \sqrt{490}$	A1	AO1	
		$\tan C \hat{A} B = \frac{CD}{4R}$	D.4.4	0.04	
		$\frac{AD}{AD}$	M1	AO1	
1		$tan C \hat{A} B = 7$		404	
			A1	AO1	
	(c)	Isosceles	B1	AO2	
	(0)	10000000	"	702	
			[12]		
1			[12]		
					L

YEAR 1 | MATHEMATICS | WEEK 23 EXAM QUESTIONS MARK SCHEME

		1			
13.	(a)	Choice of variable (x) for $AB \Rightarrow AC = x + 2$	B1	AO3	
		$(x+2)^2 = x^2 + 12^2 - 2 \times x \times 12 \times \frac{2}{3}$	M1	AO3	
		$x^2 + 4x + 4 = x^2 + 144 - 16x$ $20x = 140 \Rightarrow x = 7$	A1	AO3	
		AB = 7, AC = 9	A1	AO3	(Amend proof for candidates who
		_			chooseAC = x)
	(b)	$\sin A\hat{B}C = \frac{\sqrt{5}}{3}$	B1	AO1	
		$\frac{\sin B\hat{A}C}{12} = \frac{\sin A\hat{B}C}{9}$	M1	AO1	f.t. candidate's derived
		12 9			values for AC and $\sin A\hat{B}C$)
		2 - 4√5	A1	AO1	
		$\sin B\hat{A}C = \frac{4\sqrt{5}}{9}$	[7]	AOT	(c.a.o.)
14.	(a)	9000	B1	AO3	(o.e.)
' '	(α)	Height of box = $\frac{9000}{2x^2}$		7,00	(0.0.)
		$S = 2 \times (2x \times x + \frac{9000}{2x^2} \times x + \frac{9000}{2x^2} \times 2x$	M1	AO3	(f.t. candidate's derived
		$2x^2$ $2x^2$			expression for height of
		$S = 4x^2 + \frac{27000}{x}$	A1	AO3	box in terms of x) (convincing)
	(b)	$\frac{dS}{dx} = 8x - \frac{27000}{x^2}$	В1	AO1	(
		1 332			
		Putting derived $\frac{dS}{dx} = 0$	M1	AO1	
		x = 15	A1	AO1	(f.t. candidate's $\frac{dS}{dx}$)
		Stationary value of S at $x = 15$ is 2700	A1	AO1	(c.a.o)
		A correct method for finding nature of the stationary point yielding a minimum value	B1	AO1	
			[8]		